En esta primera fase competitiva participaron más 1.200 investigadores de todo el mundo repartidos en más de 120 equipos. El objetivo era identificar a los mejores grupos para continuar en la fase colaborativa. Sólo ocho han pasado a la final puntuando significativamente mejor que el resto, entre los que el equipo de la UPV-IFIC es el único representante español. El objetivo de los finalistas ahora es construir un nuevo modelo, basado en avanzados algoritmos de predicción, que ayude a los profesionales médicos en el diagnóstico de esta patología.
“Actualmente, de cada 1.000 mujeres que se someten a una mamografía, 5 son diagnosticadas con cáncer. Pero 100 vuelven a ser citadas para someterse de nuevo a esta prueba, con lo que ello conlleva para la paciente tanto de estrés como de radiación en su cuerpo”, destaca Alberto Albiol, investigador del Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM) de la UPV.
En la primera fase del desafío, los participantes completaron dos tareas: desarrollaron un primer algoritmo predictivo para analizar imágenes de mamografía digital y un segundo capaz de analizar tanto imágenes de mamografía digital como información clínica adicional. Es la primera vez que se accede a una colección de imágenes de esta magnitud con fines científicos. Las imágenes (más de medio millón) están tomadas directamente de los hospitales, con lo que los resultados serán más fácilmente trasladables a la práctica clínica.